Microwave properties of ZrTiO₄ with partial substitution of Zr⁴⁺ and Ti⁴⁺for Ce⁴⁺

A. BADEV^{*}, I. ILIEV

Department of non-ferrous metals and semiconductors- UCTM, Sofia, Bulgaria

The ZrTiO₄ system is one of the classic materials used for microwave devices such as microwave dielectric resonators, but unfortunately it has τ_f = 58 ppm/deg. A technological disadvantage of this material is its high sintering temperature (1600 °C). For the synthesis of ZrTiO₄ (ZT) with zero τ_f , there have often been made substitutions of Zr⁴⁺ for Sn⁴⁺ - the material ZST, and for lowering the sintering temperature, different sintering aids such as ZnO, CuO, V₂O₅ have been used. As Cerium is of fourth valence and will not disrupt the electro neutrality of the mixed oxide, it is interesting to investigate the microwave properties of ZT at a partial substitution of Zr⁴⁺ or Ti⁴⁺ for Ce⁴⁺. It has been revealed that for small concentrations of CeO₂ the microwave properties of ZT do not worsen, the temperature compensation is achieved for $\tau_f \rightarrow 0$, and the sintering temperature lowers to 1300 °C.

(Received December 20, 2007; accepted January 10, 2008)

Keywords: Sintering temperature, Microwave properties, Structure

1. Introduction

The ZrTiO₄ solid solution is one of the most adapted ones for materials used as dielectric resonators. The following ceramic has ε_r of (40-42) and Q_f (28000-31000 GHz) at 7 GHz, respectively tan δ = 2.3×10⁻⁴ [1,2]. Unfortunately the compound has a relatively high τ_f = 58 ppm /deg. By means of partial substitution of Zr⁴⁺ for Sn⁴⁺ respectively SnO₂, the material ZST (Zr_{0.8}Sn_{0.2}TiO₄) has been successfully synthesized with a zero temperature coefficient of resonant frequency, ε_r (37-40) and losses from 1.9×10⁻⁴ to 1.4×10⁻⁴ respectively Q_f from 53 000 GHz (at 10 GHz) to 61 000 GHz (at 7 GHz) [3-6].

There have also been made substitutions with Hf such as $Zr_{0,8}Hf_{0,2}TiO_4$ and $Zr_{0.75}Hf_{0.25}TiO_4$ [7,8], where the following parameters were obtained : ϵ_r (38-43), Q_f (62 000 at 4 GHz, 20 000 at 8.5 GHz) and a near zero τ_f .

Jacob and co-authors [9] have analyzed ZST composition doped with small quantities of CuO and ZnO for lowering the sintering temperature. It has the following parameters ε_r (35-38), tan δ (1-3) ×10⁻⁴ and $\tau_f \rightarrow 0$. Wang and co-authors [10] have investigated ZST ceramic material with glass additives (10%). The synthesized ceramic has a low sintering temperature (1150°C), $\varepsilon_r = 30$, $Q_f = 30\ 000\ \text{GHz}$ and $\tau_f = -4\ \text{ppm/deg}$.

Wang and co-authors [11] diminished the sintering temperature of ZST material to 1300 °C by adding 2% V₂O₅. The compound has $\varepsilon_r = 37$, tan $\delta = 1.35 \times 10^{-4}$ and $\tau_f = -2.1$ ppm/deg [12].

In a previous paper [13] we investigated the effect of Ca^{2+} -Ti⁴⁺ additions on the microwave properties of the Mg-(Ca,Ti)-Al-O spinel and the compensation of τ_{f} .

The purpose of this work is to evaluate the effect of substitutions of Zr^{4+} and Ti^{4+} for Ce^{4+} , which is of same valence and therefore will not affect the electro-neutrality of the system.

We have analyzed the microwave properties in the conditions of a partial substitution of Zr^{4+} for Ce^{4+}

 $(Zr_{1-x}Ce_xTiO_4)$, and Ti^{4+} for Ce^{4+} $(ZrCe_xTi_{1-x}O_4)$.

According to Aguila [13] in the system $ZrO_2 - CeO_2 - TiO_2$ a solid solution ($Zr_xCe_yTi_2O_2$) occurs at x+y+z=1, much alike $ZrTiO_4$, with possible presence of phases like ZrO_2 , TiO_2 and $Zr_2Ce_2O_7$.

2. Experimental procedures

As starting materials, we used ZrO_2 Fluka, TiO_2 Kronos, CeO_2 Fluka with purity 98-99 %. The weights of the initial oxides are calculated according to the formula $Zr_{1-x}Ce_xTiO_4$ and $ZrCe_xTi_{1-x}O_4$.

The synthesis is made by the conventional mixed oxide route. The ball milling and homogenization are done in planetary ball mill Retsch in agate milling pots and balls, using deionized water as a wetting agent, during one hour. The dried mixture is calcined in alumoxide pots at 1100 °C for three hours.

A secondary milling is then made with the same conditions as the first one. From the dried material, it is made press-powder with binder PVA (5% solution). For pressing we use a powder fraction of 0.25-0.5 grain size at a pressure of 1.5 t/cm^2 . The sintering process is proceeded in superkanthal furnace Linn, at 1300 °C and 1350 °C for three hours with isothermal maintaining at each sintering temperature.

For XRD analysis we use a powder from the sintered samples.

The measurements of ε_r , tan δ , and τ_f are made by Hakki and Kolemann method modified by Courtney [15,16].

3. Results and discussion

• X-ray results

The XRD Figs. 1 and 1 bis below show that the main phase is $ZrTiO_4$. There is a small quantity of CeO_2 or

 $Zr_2Ce_2O_7$ phase (their characteristic lines are too close, to be clearly separated).

According to Aguilla [14] in the system ZrO_2 -CeO₂-TiO₂ a liquid phase at high temperature is possible to appear. This phase forms at room temperature an intercrystalline phase rich in CeO₂ and TiO₂.

Fig. 1. XRD pattern of $ZrCe_xTi_{1-x}O_4$ composition sintered at 1350 °C.

Fig.1 bis. XRD pattern of $Zr_{1-x}Ce_xTiO_4$ composition sintered at 1350°C.

• Microwave parameters

Fig. 2 below shows that ε_r increases with Ce⁴⁺ content. The function $\varepsilon_r = f(x)$ for Zr_{1-x}Ce_xTiO₄ is well expressed within Fig. 3 and has a linear shape. This proves that a solid solution is formed within the above mentioned composition. ε_r probably increases with Ce⁴⁺ content as the value of ε_r of CeO₂ (20) is higher than the one of ZrO₂ (8-9). The dielectric permettivity of ZrCe_xTi_{1-x}O₄ poorly depends on the composition (x). This may be due to the presence of an inter cristalline phase rich in CeO₂ and TiO₂. In such cases the influence of additions is poorly expressed. It is likely for dielectric losses (see Fig. 3).

Fig. 2. Evolution of ε_r as a function of the composition (x) in $Zr_{1-x}Ce_xTiO_4$ and $ZrCe_xTi_{1-x}O_4$ system.

Fig. 3. $tan\delta$ as a function of (x) in $Zr_{1-x}Ce_xTiO_4$ and $ZrCe_xTi_{1-x}O_4$ system.

As seen on Fig. 3, for $ZrCe_xTi_{1-x}O_4$ tand stays low $(2-3)\times10^{-4}$ and do not depend on the composition (x). As for the quality factor Q_f - Fig. 4, it can be seen that the compositions with high Q_f value are the ones that possess small quantity of CeO₂ (x < 0.25). Furthermore the increase in dielectric losses can be related to the presence of a cation with variable valence (Ce⁴⁺, Ce³⁺).

Fig. 4. Evolution of Q_f with the composition (x).

Fig. 5. Evolution of τ_f with the composition (x).

Fig. 5 shows that for both compositions, the temperature coefficient tends to zero for x (0.20-0.25) due to the compensation of the present phases with opposite signs.

4. Conclusions

The X-ray analysis show that in the ZrO_2 -CeO₂-TiO₂ system, a $Zr_xCe_yTi_zO_4$ solid solution is formed as well as small quantities of secondary phases (CeO₂ or $Zr_2Ce_2O_7$ -Ti₂Ce₂O₇). Their characteristic lines are too close to be distinguished.

The partial substitution of Zr^{4+} for Ce^{4+} or Ti^{4+} for Ce^{4+} lower the sintering temperatures (from 1600 °C for ZrTiO₄ to 1300 - 1350 °C) without a significant deterioration of the microwave parameters.

The temperature annealing of τ_f ($\tau_f \rightarrow 0$) is done at x = 0.24-0.25 for both substitutions.

The optimal parameters for both compositions are achieved at sintering temperature 1350 °C/3hrs, where $\varepsilon_r = 30$, tan $\delta = 2-3 \times 10^{-4}$ and $\tau_f \rightarrow 0$.

References

- [1] H. Tamura, Amer. Cer. Soc. Bull. 73, 94 (1994).
- [2] S. Hirano, J. Otsuka, Annual Meeting of the Amer. Cer. Soc., Indianapolis (1989).
- [3] D. Houivet, J. Fallah, J-L. Huassone, J.ECS, **19**, 1095 (1999).
- [4] C. Huang, C. Hsu, R. Lin, Mater. Res. Bull 36, 1985 (2001).
- [5] H. Tamura, Amer. Cer. Soc. Bull, 73, 94 (1994).
- [6] S. Hirano, T. Hayashi, A. Hattai, J. Am. Cer. Soc. 74, 1320 (1991)
- [7] A. Kan, H. Ogawa, H. Ohsato, Jap. J. Appl. Phys. 40, 5774 (2001).
- [8] H. Ikawa, H. Narita, O. Fukunaga, J. of Jap. Cer. Soc. 98, 860 (1990).
- [9] M. Jacob, D. Pamn, J. Raju, J. Am. Cer. Soc. 90, 1511 (2007).
- [10] Y. Wang, S. Wang, C. Wen, Mater. Sci. and Engineering A, 426, 143 (2006).
- [11] C. Huag, M. Weng, C. Wu, C. Wei, J. Appl. Phys. 40, 698 (2001).
- [12] M. Sebastian, A. Axelson, N. Alford, List of microwave dielectric resonator materials and their properties, South Bank University, London, 25.11.2005.
- [13] I. Iliev, A. Badev, J. P. Chambronne, V. Parvanova, V. Levtcheva, Optoelectron. Adv. Mater. – Rapid-Comm. 1(11), 636 (2007).
- [14] F. Aguila, These, Univ. Complutense de Madrid, (1998).
- [15] Hakki, P. Colleman, IRE, MTT-8, 402 (1960).
- [16] W. Courtney, MTT-18, 476 (1970).

^{*}Corresponding author: alex badev@yahoo.com